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Abstract

Bioelectric signaling is transduced by neurotransmitter pathways in many cell types. One of the key mediators
of bioelectric control mechanisms is serotonin, and its transporter SERT, which is targeted by a broad class of
blocker drugs (selective serotonin reuptake inhibitors [SSRIs]). Studies showing an increased risk of multiple
malformations associated with gestational use of SSRI have been accumulating but debate remains on whether
SSRI as a class has the potential to generate these malformations. This review highlights the importance of
serotonin for embryonic development; the effect of serotonin inhibition during early pregnancy on the oc-
currence of multiple diverse malformations that have been shown to occur in human pregnancies; that the risks
outweigh the benefits of SSRI use during gestation in populations of mild to moderately depressed pregnant
women, which encompass the majority of pregnant depressed women; and that the malformations seen in
human pregnancies constitute a pattern of malformations consistent with the known mechanisms of action of
SSRIs. We present at least three mechanisms by which SSRI can affect development. These studies highlight
the relevance of basic bioelectric and neurotransmitter mechanism for biomedicine.
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Introduction

Teratogens are factors that alter or interfere with em-
bryonic development resulting in malformations, death,

growth retardation, or functional deficits in the embryo or fe-
tus.1 That drugs can act as human teratogens has been accepted
by the medical and scientific communities for >50 years.
Agents such as thalidomide, retinoic acid, and antiepileptics,
to name a few, are compounds that are teratogens as demon-
strated by epidemiological methods, principles, and criteria.
Recent epidemiological research has shown that selective
serotonin reuptake inhibitors (SSRIs), the most commonly
used class of antidepressants, by their common mechanism
that inhibits reuptake of serotonin or 5-hydroxytryptamine
(5-HT) by the serotonin transporter (SERT or 5-HTT), in-
crease the risk of spontaneous abortions, major congenital
malformations, intrauterine growth retardation, prematurity,
and cognitive delay.2–20

In addition to the fact that data are accumulating that dem-
onstrate a risk of major congenital malformations associated
with SSRI use during gestation, the efficacy of these drugs for
the treatment of depression has been questioned. For example,
due to increased maternal metabolism during pregnancy,21

SSRI drug dosage should be increased to maintain the same
prepregnancy effectiveness.22 However, evidence shows that
the majority of women maintain or decrease their SSRI dosage
once their pregnancy is diagnosed.21 Therefore, if there were
benefits to SSRI use before pregnancy, this is no longer the case
during pregnancy. Furthermore, the majority of depressed wo-
men are moderately depressed,23 and the risk to the unborn
child of using SSRIs outweights the benefits in this population,
given that exercise or psychotherapy is now known to be ef-
fective alternatives to taking the drugs.23

According to the United States Food and Drug Adminis-
tration (FDA)’s Established Pharmacologic Class,24 SSRIs
are an established pharmacological class because they all

1Faculty of Pharmacy, University of Montreal; Research Center, CHU Sainte-Justine, Montreal, Quebec, Canada.
2Allen Discovery Center at Tufts University, Department of Biology, Medford, Massachusetts.
3Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, Utah.
4Department of Psychiatry, Hergest Unit, Bangor, United Kingdom.

BIOELECTRICITY
Volume 1, Number 1, 2019
ª Mary Ann Liebert, Inc.
DOI: 10.1089/bioe.2018.0003

18

D
ow

nl
oa

de
d 

by
 9

3.
40

.2
52

.6
3 

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

4/
30

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



have the same mechanism of action, which is to inhibit 5-HT
reuptake by SERT, thereby increasing extracellular concen-
trations of the neurotransmitter. By these criteria, the drugs
sertraline, paroxetine, citalopram, escitalopram, and fluoxe-
tine belong to this established pharmacological class.24 In
fact, all drugs with potent serotonin reuptake inhibiting ef-
fects constitute a class—this includes SSRIs but also venla-
faxine, desvenlafaxine, duloxetine, and clomipramine.

This review presents the available evidence concerning the
effects of SSRIs on the fetus during pregnancy as well as the
role of 5-HT in normal embryonic development. We posit at
least three types of mechanisms by which SSRIs can affect
development (Fig. 1): by altering endogenous serotonin levels
in embryonic tissues, alteration of developmental signaling
through modulation of electrogenic ion channels, and per-
turbation of calcium signaling pathways. Also, the impact of
maternal depression and the effectiveness and risk of SSRIs in
preventing or treating depression in pregnant women are
discussed. The safety of prescribing SSRIs to treat depression
and related conditions in women of childbearing age is of
paramount public health importance, given the potentially
serious outcomes for the unborn child.

The Importance of Serotonin for Normal
Embryonic Development

Serotonin is not only a neurotransmitter but also a pro-
foundly important medium for cell to cell communication
among many cell types during embryogenesis.25–27 It has

been implicated in several developmental events in addition
to its roles in regulation of the nervous system.28–43 Most of
the data on serotonin’s role during embryogenesis are derived
from model systems, in which definitive functional experi-
ments can be performed that are impossible in human em-
bryos for ethical reasons. It should be kept in mind that the
fundamental mechanisms of cell biology and developmental
pathways are highly conserved among vertebrate species; this
is why organisms from yeast, to fruit fly, and to frog are
responsible for many breakthroughs in human biomedicine
(including birth defects, stem cell biology, and cancer). A
range of animal models, including mammals such as rodent
and rabbit, together with nonmammalian animals, such as
Xenopus (frog), chicks, and zebrafish, provide vital infor-
mation regarding the common and evolutionarily ancient
mechanisms that orchestrate individual cell behaviors es-
sential for normal development.

The embryo’s serotonin pool derives from two sources:
zygotic and maternal. Mammalian embryos generate their
own serotonin very early, long before the nervous system
appears. For example, mouse embryonic stem cells synthe-
size 5-HT,44 and both 5-HT and SERT are found in oocytes
and cleavage-stage embryos of many species.45,46 Moreover,
serotonin generated by the mother is passed on to the de-
veloping embryo through placental uptake and transport.43

Recent work has shown that serotonin is a key signaling
molecule and is a medium for communication among cells
during embryogenesis.28,29,35,36,42,47 Thus, appropriate sig-
naling requires a delicate balance and correct concentrations

FIG. 1. Three types of
mechanisms by which SSRIs
can affect development.
SSRIs, selective serotonin
reuptake inhibitors.
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of serotonin in specific locations. Total 5-HT levels measured
in blood are not sufficient to detect imbalances in this type of
signaling because the relevant levels are within and adjacent
to key cell types within the embryo and not in the maternal or
fetal circulations. The fact that SSRIs readily cross the pla-
centa48 and the fact that these drugs are designed to alter
extracellular concentrations of 5-HT create a recipe for dis-

rupting these delicate balances of the neurotransmitter and,
hence, its ability to act as a signaling molecule.

Serotonin signals in two basic modes. In the extracellular
mode (Fig. 2A), 5-HT arrives at the surface of target cells by
diffusion from external locations and activates any of a
family of seven extracellular serotonin receptors.49 The se-
rotonin source can be remote cell types,29 or may indeed be

FIG. 2. Two basic modes for serotonin signals. (A) Extracellular mode. (B) Intracellular mode.
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secreted and received by the same cell (autocrine signaling).
In the intracellular mode (Fig. 2B), serotonin arrives intra-
cellularly through SERT-mediated import or through gap
junction channels with neighboring cells.36,50–56 Levels of
intracellular serotonin control cell division,57 cytoskeletal
dynamics,58–60 second messengers (adenylate cyclase and
histone deacetylase),61–63 and developmental gene expres-
sion. This occurs through binding to intracellular serotonin
binding proteins,64 including Mad3 and 5-HT-R2,65,66 and by
serotonylation of a variety of key molecules.67–70

Developmental serotonin signaling participates in a num-
ber of patterning events. One is establishment of body organ
laterality—the invariant positioning of the visceral organs
and heart. Consistent left–right (LR) asymmetry is a highly
conserved feature in amphibians, reptiles, birds, fish, and
mammals, all of which orient their hearts and visceral organs
with the same biases in placement and morphology. In fact,
the most basic cell signals for establishing laterality are
conserved among many diverse species, including plants,
nematodes, frogs, and humans.47,71 This conservation is im-
portant because it means that the basic mechanisms of LR
asymmetry can be readily studied in model organisms.72

Errors in establishing laterality result in heterotaxy and include
an important class of human birth defects with serious medical
implications for the patient.73–76 It has been shown in chick and
frog models that serotonergic signaling is required for the left
and right sides of the body to acquire their identity and properly
orient asymmetric organs such as the heart, stomach, liver, and
others.28,35,36,42,65,77–79 In addition, serotonergic signaling
controls cell proliferation,80–85 regulation of cell shape and cell
movement patterns,29,47,86–89 neurogenesis and brain pattern-
ing,90,91 heart morphogenesis,92 eye development,93 and cra-
niofacial morphogenesis.39,94–96

SSRIs can block 5-HT uptake by the ectoplacental cone
(early placenta in rodents) and placenta.43 Importantly, the
SERT, a membrane protein that transports serotonin across
cell membranes, acts as a key regulator of serotonin avail-
ability both inside and outside of cells. Although the name
‘‘reuptake inhibitor’’ for compounds that block SERT fo-
cuses on transport of serotonin into cells, SERT can also run
in reverse to provide a source of serotonin to surrounding
cells.97,98 This process is key to the regulation of certain
kinds of stem cell derivatives.29 Thus, SSRIs affect mecha-
nisms dependent on extracellular serotonin (mediated by
plasma membrane receptor types 1–7) and mechanisms
dependent on intracellular serotonin (epigenetic marking
through HDAC1 and serotonylation of other signaling
molecules).

Not only the mature nervous system but also many early
embryonic cells utilize serotonin as a signaling messen-
ger.59,60,99–102 Thus, by design and purpose, any of the class
of SSRI drugs will profoundly affect the concentrations of
this key molecule and thus the 5-HT-dependent signaling that
is necessary for completing normal embryogenesis.

Bioelectricity: A Teratogenic Mechanism for SSRIs
in Addition to Serotonergic Pathways

There is another mode of action by which SSRIs can
perturb embryogenesis, distinct from the primary effects on
SERT and serotonin levels. A number of studies have shown

that SSRIs can bind to and modulate the activity of numerous
ion channels in mammalian cells, including sodium, chloride,
and potassium channels.103–115 Binding to these channels is
relevant to the origin of birth defects because ion channel
activity, such as serotonergic signaling, is not only a function
of the nervous system but also a major mechanism for co-
ordinating cell processes during embryonic morphogenesis
of many organ systems.116,117

Data on developmental bioelectricity reveal that ion
channels set up precisely patterned endogenous electric fields
and voltage gradients regulating the formation of the heart,
limb, brain, eye, and face.118–127 Human channelopathies
(mutations disrupting bioelectric signaling) have revealed
how disruption of ion channels can play a role in the causation
of birth defects, including Andersen–Tawil syndrome,128,129

urogenital malformations,130,131 Angelman syndrome,132,133

Beckwith–Wiedemann syndrome,134–136 and defects of the
face,137 heart, central nervous system, and neck.138 Recently,
Gelb and coworkers139 discovered numerous ion channel
mutations, including some involving channels directly mod-
ified by SSRIs, which result in birth defects of the heart (in-
cluding laterality defects predicted by earlier work in
frogs28,35,36,42,140–142) and of the limb in mouse embryos.
These data clearly confirm that the results obtained from frog
models are directly relevant to mammalian development.

Transmembrane resting potentials (determined by specific
ion channels) regulate proliferation and differentiation in a
range of somatic and stem cell populations in vivo.126,143 The
known interactions of SSRIs with sodium, potassium, and
chloride ion channels103,104,106,107,109–111,113–115 suggest the
likelihood that SSRI exposure of the fetus will perturb the
fine-tuned bioelectrical signaling that enables individual cells
to differentiate and arrange themselves in correct anatomical
structures.144

Based on these effects of 5-HT as a signal molecule po-
tentially regulating development of a variety of organ sys-
tems through effects on general cell processes, such as
proliferation and migration, it is easy to understand how
SSRIs can cause multiple types of birth defects. In fact, this
outcome appears to be exactly what occurs as shown by ep-
idemiological studies.5–9,11,13–15,145–147 In turn, this multi-
plicity of birth defects then ‘‘dilutes’’ the data because
incidences of any single defect may be low, making it diffi-
cult to identify statistically significant associations between
in utero drug exposure and teratogenicity. However, the
‘‘array’’ of defects observed after exposure to SSRIs may
represent a single classification of abnormalities with a com-
mon origin, hence a pattern of malformations.

For example, as stated previously, 5-HT is an important
signaling molecule for establishing laterality by specifying
the left–right (LR) axis on approximately the 14–16th days of
gestation in humans (postconception).28,35,36,42,65,77–79 The
establishment of this axis is essential for normal development
and disruptions in this process, as can be caused by SSRIs,
resulting in heterotaxy. Individuals with this condition have
abnormalities of positioning of organ systems, including the
spleen, heart, liver, and gut, and a wide variety of birth de-
fects.75,148–152 The most sensitive organ to disruptions in la-
terality signaling is the heart73,151 and virtually every type of
heart defect can occur when this signaling is altered, includ-
ing atrial septal defect, ventricular septal defect, double outlet
right ventricule, hypoplastic left ventricles, hypoplastic right
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ventricles, tetralogy of Fallot, single ventricle, atrial inversions
and isomerisms, ventricular inversions, and transposition of the
great arteries among others.73,149,153–155 A variety of other de-
fects may also occur, particularly vascular defects, such as total
anomalous pulmonary venous return.14,156 There is also a link
between laterality abnormalities and midline defects that has
been documented in the clinical literature since at least the mid
1990s. All types of midline defects have been observed in pa-
tients with laterality abnormalities, including neural tube de-
fects, cleft lip and palate, gastroschisis, omphalocele, anal
atresia and stenosis, and caudal dysgenesis.75,148–152,156 In fact,
midline defects so commonly occur when laterality signaling is
disrupted that if a patient has a midline defect, it has been
estimated that they are 3 times more likely to have a laterality
issue as compared with patients without a midline defect, and
100 more times than the general population.148,151 Furthermore,
because many patients are never specifically assessed for la-
terality issues, these rates are likely under-reported. More im-
portantly, individuals with midline defects do not require
laterality abnormalities to be classified as having disrupted la-
terality signaling as the primary etiology of their midline mal-
formation. This point has been proven in studies of family
members with known mutations to laterality genes. In such
families, a high incidence of family members exhibit only a
single midline malformation, such as cleft palate or a neural
tube defect, with no other abnormality.151,152,156 The reason that
midline defects are common is probably due to the fact that as
development proceeds, the different axes, including the ante-
rior–posterior (cranio–caudal), dorso–ventral, and LR, must be
coordinated in specifying the origin and position of the different
organ systems.152,157–159 Therefore, if one axis, such as the LR,
is abnormal, it disrupts the coordinated effort and results in a
variety of defects, some of which might not appear to be related
directly to effects on the targeted axis. Hence, a midline defect
might occur due to a disruption in laterality signaling. Thus, the
SSRIs may produce a variety of birth defects through a common
mechanism of altering 5-HT concentrations and through a
common pathway of disrupting 5-HT signaling responsible for
establishing the LR axis at 14–16 days of gestation. This ex-
planation readily explains the variety of seemingly unrelated
defects seen at birth after SSRI exposure in utero.

SSRIs and Major Congenital Malformations in Humans

Depressive symptoms are common during pregnancy, and
SSRIs are the most frequently used antidepressants to treat
pregnant women.21,160,161 Studies concerning the adverse
effects of SSRI exposure during gestation on the developing
fetus have indicated an increased risk of various congenital
malformations,2,5–10,18 but inconsistencies between study
results remain.11–13,162,163 These could potentially be ex-
plained by indication bias wherein the effect of the drug and
the indication are correlated and not fully accounted
for,6,145,164 or misclassification bias wherein exposure and/or
outcome assessment have not been validated.165

Gestational use of SSRI has been associated with an in-
creased risk of various major congenital malformations.2,5–14,18

This has been repeatedly shown in large well-designed
population-based studies with sufficient statistical power.
Indeed, over the past 20 years, data on the risk of mal-
formations associated with intrauterine exposure to SSRI
have been accumulating, even more so after 2005, when the

warning on the risk of heart defects associated with parox-
etine exposure during pregnancy was issued.166 Although the
magnitude of the risk varies from one study to another, and
between organ systems, it remains that as early as the mid-
‘90s, sufficient signals on the risk of major congenital mal-
formations on human pregnancy exposures to SSRIs have
been available.

Overall, SSRIs as a class and SSRI-specific drugs increase
the risk of major congenital malformation by at least 30%
during pregnancy (30–130% increase in risk);2,7,9,10,13,15,18

the risk also increases with increasing dosage, which is
supportive of a dose–response relationship,6,15 and longer
duration of use during pregnancy, which is consistent with a
cumulative effect.10 Although some studies lack statistical
power, the majority of risk ratio estimates are >1, indicating
an increase in risk. Even after considering the potential for
bias, confounding and chance finding, the evidence-based
literature demonstrates that prenatal exposure to SSRIs as a
class causes an increased risk of congenital malformations in
infants exposed in utero during the critical developmental
time period. Given that major malformations are rare, more
weight should be put on repetitions of findings or defects with
known mechanisms of action than statistical significance,
which solely depends on the number of exposed cases.164

SSRIs as a class increase the risk of major cardiac mal-
formation by at least 60% as compared with nonuse during
pregnancy.2,7,9,11,14,15,18,146 The published peer-reviewed
evidence on sertraline, fluoxetine, citalopram, escitalopram,
and paroxetine consistently demonstrates an increase in the
risk of cardiac malformation from a 9% increased risk to
more than four times the risk seen in nonusers. Although
some cardiac defects are rarer and would require a very large
sample size, which would be very difficult to acquire, there is
evidence on some of the specific types of cardiac defects.
Hence, SSRI as a class and SSRI-specific drug use during
gestation have been associated with an increased risk of atrial
and ventricular septal defects,2,5–9,11,14,15,18,145,164 right and
left ventricular outflow track obstruction,5,8,18 conotruncal de-
fects,5,8 transposition of the great arteries,5 tetralogy of Fallot,5

pulmonary valve stenosis,5 and patent ductus arteriosis.14

SSRIs have also been shown to increase the risk of cra-
niosynostosis (odds ratios range from 1.94 to 2.5).2,5,8,15,145

Of note, the critical period of development for craniosynos-
tosis may extend beyond the first trimester as shown by Al-
wan et al.5 who estimated a 90% increase in risk associated
with second and third trimester exposure to SSRIs. However,
Berard et al.145 showed that exposure at any time during
pregnancy did not change findings. SSRI as a class also in-
creases the risk of gastrointestinal defects (omphalocele,
gastroschisis, esophageal atresia, anal atresia, hypertrophic
pyloric stenosis, and vesicoureteric reflux)5,8,14,15; neural
tube defects (anencephaly and spina bifida)5,8,11; cleft lip
with or without palate8,11,14; limb defects5,8,14,167; and other
defects such as diaphragmatic hernia,5,8 hypospadias,8 un-
descended testis,8 and cystic kidney disease.14 All of these
phenotypes are potential outcomes of perturbed serotonergic,
bioelectrical, and calcium signaling. Furthermore, there is
consistent evidence showing that SSRI as a class at least
doubles the risk of persistent pulmonary hypertension of the
newborn.168–171

Finally, SSRI as a class, and all SSRIs-specific drugs have
been found to increase the risk of spontaneous abortions.3,4,172
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D
ow

nl
oa

de
d 

by
 9

3.
40

.2
52

.6
3 

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

4/
30

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Given that embryos with severe malformations are predomi-
nantly miscarried,164 this suggests that the true impact of anti-
depressants on the occurrence of defects is much higher than
would be apparent from examination of embryos that survived
to birth.

In summary, SSRIs considered separately or as a class
have consistently been shown to increase the risk of major
congenital malformations in general, and major organ system
malformations specifically, even after considering the dif-
ferent magnitude of effects reported in studies. Defects ob-
served at birth have similar embryonic origins and can be
considered a pattern of malformations as already explained.

The Role of Depression

Recent reviews of prenatal mental health issues note that
35% of pregnant women have depressive symptoms and there
are claims that 10% of them are depressed.173 One problem
with this formulation is that having symptoms, even meeting
every single one of the operational criteria for depression,
does not necessarily mean a person is depressed. The point
prevalence of major depression is 3.8% at the end of the first
trimester, 4.9% at the end of the second trimester, and 3.1% at
the end of the third trimester of pregnancy rather than the 10–
15% routinely reported.174 When arguments for treating
prenatal depression are put forward, they state that untreated
depression leads to smoking, alcohol and drug intake, poor
self-care, suicide, and postnatal depression.175 They fur-
thermore infer that there may be a direct toxic effect of un-
treated depression on the fetus.176 Finally, they point to
effects on the development of the child in later life, arguing
that these are substantial and deleterious.177 There are no
known direct toxic effects of prenatal depression on the fetus.
There is no known endocrine change linked to the majority of
common nervous disorders that affect pregnant women that
could affect the fetus. Maternal depression during pregnancy
is not associated with the risk of congenital malformation,
hence is not a risk factor for malformations. However, life-
styles associated with maternal depression, such as smok-
ing,178 alcohol use,179 and lack of folic acid use,180 have been
implicated in the occurrence of major congenital malforma-
tions. Therefore, maternal depression is often used as a proxy
for associated lifestyles.

Mothers who are depressed during pregnancy are, how-
ever, at increased risk of postpartum depression,181 and have
lower mother-to-child attachment after delivery.182 If pre-
natal depression leads to a postnatal depression, there is al-
ways the opportunity to treat the depressive disorder
vigorously at that time without risk to the fetus. Nevertheless,
depression should be monitored during gestation and appro-
priate treatment (exercise and psychotherapy)183,184 should
be considered. Furthermore, SSRIs are transferred to breast
milk when used during the postnatal period, and thus have the
potential to impact newborns during this time window.

Effectiveness of SSRIs During Pregnancy

Until the advent of SSRIs, the term depression in general
referred to a more serious condition than major depressive
disorder (MDD) now refers to. This more serious condition
was originally called melancholia, later becoming endoge-
nous depression. We know little about the risks of leaving
classic or severe depressive disorders of this type untreated.

Melancholia is extremely rare in women who are pregnant, or
in women of childbearing age. SSRIs are not given for classic
or severe depressive disorders since the drugs are not effec-
tive in treating these conditions. These drugs are less effec-
tive than older antidepressants such as clomipramine for
more severe depressive disorders. SSRIs are marketed for and
given to women with anxiety and depressive symptoms. The
lack of evidence concerning the efficacy or effectiveness of
SSRI therapy, together with the fact that numerous studies have
documented their detrimental effects on embryonic and fetal
development mandates that alternative nonpharmacological
interventions should be recommended for pregnant women
with a resort to medication being a secondary option. At
present, little consideration is given to nonpharmacologi-
cal treatments with proven efficacy, such as exercise183 or
psychotherapy.184

In 2006, the FDA held hearings on the issue of warnings
regarding suicidality based on data from adult trials of anti-
depressants including all SSRIs. These trials in total con-
tained close to 100,000 patients, >50,000 of whom were
depressed patients. Aside from the question of suicidal acts,
data from all short-term placebo-controlled adult trials for
MDD for the past 15–20 years show that antidepressants in
general have minimal effectiveness. When data from all
randomized trials are combined, 5 out of every 10 patients
respond to the drugs, but in the same trials 4 out of every 10
patients respond to placebo.185 Therefore, only 1 in 10 pa-
tients put on treatment responds specifically to the drug they
have been put on, whereas 5 out of 10 either fail to respond or
respond adversely.185 The high placebo response means that
in many cases, the natural history of depressive disorders is to
resolve spontaneously; in other instances, diet and hygiene
will provide effective treatments, or assistance from the pa-
tient’s physician to help work out problems at home or at
work will solve the issue. Therefore, evidence-based findings
demonstrate that in all instances, not just in the case of
pregnant patients, SSRIs are not an effective treatment pro-
tocol for depression and should only be used for patients who
do not respond to a conservative approach. Furthermore, is-
sues regarding efficacy and the potential for harming babies
should be made clear to pregnant women so they can opt an
alternative treatment.

In the event that a particular prenatal depression or anxiety
state is judged to require active treatment rather than simply
employing monitoring measures, treatments such as inter-
personal therapy (IPT) and cognitive behavioral therapy,
which for this level of severity are as efficacious as drug
treatment, can be considered. Indeed, given the role of social
factors associated with the nervous states found during
pregnancy, IPT that originated as a treatment for postnatal
depression would appear to be particularly suitable for pre-
natal disorders.186

For moderate to severe or melancholic depressive disor-
ders, guidelines such as those issued by the National Institute
for Health and Clinical Excellence (NICE) recommend tri-
cyclic antidepressants rather than SSRIs.187

Conclusion

The Bradford Hill criteria188 are useful in evaluating
causality between an exposure and an outcome. Although
these criteria are used to assess causation, not all of them
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need to be fulfilled to establish general causation. Evidence
indicates that SSRI use during pregnancy is interrupting
and/or disturbing essential events during the embryonic
stage and organogenesis, which initiates a cascade of events
that are causing spontaneous abortions and major congen-
ital malformations. Epidemiological evidence in humans is
consistent, and findings have been replicated in different
patient populations; a dose–response has also been estab-
lished. Malformations identified that all have similar
embryonic origins and thus demonstrate a pattern of mal-
formation. Mechanistic data unequivocally demonstrate
that three major pathways known to be crucial for pattern-
ing of many embryonic organ systems, serotonergic sig-
naling, bioelectric signaling, and calcium signaling all can
be perturbed by SSRIs. The importance of these pathways in
regulating cell behavior and multiple patterning systems
during embryogenesis clearly suggests that SSRIs have the
potential to cause birth defects. Given that all SSRIs have a
similar mechanism of action, they should be considered as a
class of compounds producing the same adverse effects on
development.

Maternal depression has not been shown to increase the
risk of major congenital malformation. The majority of de-
pressed pregnant women have mild to moderate depression
for which SSRIs are ineffective. At present, the risk–benefit
ratio does not support the use of SSRIs during pregnancy.
It is important that depression be monitored, but non-
pharmacological therapies, such as exercise or psychother-
apy, should be considered as a first line treatment during
the gestational period. More broadly, because of the tight
relationship between ion channel-mediated signaling and
downstream neurotransmitter transduction steps operating
during development, the mechanistic and epidemiological
data on SSRIs serve as a primary example of the interplay
between basic work in developmental bioelectricity and
biomedicine.
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